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Abstract 

In this paper we aim to develop a computationally-
efficient image-segmentation procedure for detection 
and quantification of soft plaques in coronary arteries 
from multidetector CT images. The proposed method 
consists of three steps: extraction of the arterial lumen 
centerline, segmentation of the lumen and arterial wall 
separately with locally adaptive region growing, and 
detection of soft plaques based on effective cross-
section areas of the lumen and of the wall. Preliminary 
results using clinical acquisitions are presented to 
demonstrate the effectiveness of the proposed method.  

Index Terms – Vulnerable plaque, vessel tracking, 
MDCT images, image segmentation  
 
1. Introduction 
Studies in recent years have indicated that the rupture 
of artery lesions known as vulnerable plaques is a 
major cause of heart attacks [1,2]. Consequently, there 
is great interest in developing imaging techniques for 
detection and identification of vulnerable plaques in 
patients. Multidetector CT (MDCT) recently has 
emerged as a promising tool for characterization of 
atherosclerotic plaque composition and morphology 
within the coronary arteries [3-5].   

In this paper, we aim to develop an image 
segmentation and analysis procedure for identifying 
soft plaques in coronary arteries from MDCT image 
data. In the literature there exists a great deal of work 
on segmentation and visualization of blood vessels in 
various organs with different modalities (e.g., see [6] 
for a detailed review). Most of these methods, if not 
all, focus on how to extract vascular structures from 
image data.  

Unlike calcified plaques, soft plaques exhibit as low 
intensity and have very little contrast from the arterial 
wall inside which they reside. Moreover, the vessel 
may not always exhibit narrowing at soft plaque site; 
on the contrary, it may even undergo positive 
remodeling [1].  This consequently poses a significant 
challenge for soft plaque identification in the presence 

of imaging noise, as a traditional approach simply 
based on lumen narrowing analysis no longer works 
well. Our goal in this work is to demonstrate the 
feasibility of applying image analysis on both the 
lumen and arterial wall for detection and quantification 
of soft plaques from MDCT data.  

In this feasibility study, we will focus on a procedure 
that is computationally efficient, which is critical for 
practical implementation because modern MDCT 
scanners can now produce large volumes of data with 
ever reduced imaging time.  

Since soft plaques are known to lie within the 
arterial wall [2], our procedure begins with 
segmentation of the major coronary arteries, which 
includes separate segmentation of the lumen and 
arterial wall. We then identify the presence of soft 
plaques by examining the geometric and image 
features of the lumen and its surrounding wall surfaces. 
Our results using clinical acquisitions demonstrate that 
this procedure can produce reliable results in the 
presence of both calcified and soft plaques, which is 
important for subsequent analysis of soft plaques.  

 
2. Methods 
Our proposed procedure consists of the following three 
steps: 1) detect the centerline of the arterial lumen by 
using a multi-scale vessel tracking algorithm, 2) 
segment out separately the lumen and wall of the 
arteries by applying adaptive region-growing, and 3) 
identify presence of soft plaques by differentially 
comparing the cross-sectional areas of the detected 
lumen and wall. These steps are explained below.   
2.1.  Centerline extraction 
With contrast enhancement the lumen voxels of the 
coronary arteries appear brighter than their immediate 
surroundings, and as a consequence the blood vessels 
can be modeled by a tubular structure in MDCT 
images. As mentioned earlier, there are many methods 
developed in the literature for vessel tracking based on 
this property (e.g., [7]). Out of consideration of 
computation complexity, we adopt a centerline 
tracking approach that is similar in spirit to [8], where 
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vessel tracking is guided by a multi-scale filter based 
on local eigenvalue analysis of the Hessian matrix of 
the image.  

To guard against possible leakage of the tracking 
direction away from the lumen caused by presence of 
nearby disturbances, e.g., myocardial cavities or 
calcified plaques in the arteries, we first apply a pre-
processing step to isolate these disturbance factors. In 
addition, we also introduce an autoregressive filtering 
step on the estimated local lumen direction to suppress 
the impact of imaging noise.  Our results show that this 
can improve the robustness of the tracking algorithm.     

2.1.1. Multi-scale centerline tracking. The tracking 
procedure starts with a seed point 0p  selected on the 
lumen of a coronary artery, and searches for a set of 
centerline points along the path of the lumen in the 
following successive fashion: at point , 0,1,i ip ,  

a. Refine the point ip  so that it lies on the 
centerline of the lumen. 

b. Perform multi-scale Hessian filter analysis to 
obtain the local principal direction iv  of the 
lumen  at ip . 

c. Search for the next point along direction iv , 
i.e., 1i i i idp p v , where id is the step size. 

d. Repeat the above steps until the stop criterion is 
met. 

2.1.2. Centerline points and vessel direction. Since 
the lumen voxels are brighter than their surroundings, 
the centerline point ip  is estimated by using the local 
center of gravity of the lumen (step a above) [8]. 
Specifically, at ip  we update it by computing the 
center of gravity of an image window centered around 

ip . We iterate this until the change between two 
successive estimates is within a prescribed range (e.g., 
less than one voxel).  

To determine the principal direction iv at centerline 
point ip ,  we use the vesselness measure by Frangi et 
al. [9]. Specifically, at ip   we compute the Hessian 
matrix H of the image convolved with a Gaussian 
kernel with scale factor .  We then compute the 
eigenvalues/eigenvectors of the matrix H, based on 
which the vesselness measure ( , )iV p  is computed. 
This measure is computed for different values of , 
and the best match with the vessel is selected based on 
the largest value of ( , )iV p . The properties of the 
eigenvalues of H give important information about the 
vessel structure at ip , such as tubular vs plate-like 
structure (at vessel bifurcation); moreover, the 
eigenvector associated with the smallest eigenvalue (in 

magnitude) corresponds to the principal direction of 
the vessel, and the other two eigenvectors correspond 
to the cross-section of the vessel.  

It is expected that the estimated principal direction 
above will be sensitive to the imaging noise, because 
the Hessian matrix H involves the second derivatives 
of the image. To reduce the impact of the noise, we 
apply a post-filtering step on the search direction 
vector. Specifically, let iv  denote the computed 
principal direction at ip from eigenvalue analysis as 
above. Then the search direction iv  is obtained by 
using the following autoregressive filter:  

1(1 )i i iv v v   (1) 
where 1iv is the search direction at previous centerline 
point 1ip , 0 1  is a constant used to control the 
update speed. In our experiments, 0.5  was used. 

To avoid backward tracking, the eigenvector iv  in 
(1) is chosen to be in the general direction of 1iv , i.e., 

1, 0i iv v ; otherwise, its opposite direction is used. 
In our experiments, for centerline extraction a cubic 

window with 10 voxels in each dimension was used for 
computing the center of gravity; the step size used was 
3 pixels between two consecutive centerline points.  

2.1.3. Pre-processing of images. As can be seen, the 
centerline searching procedure can be disturbed by 
image features that may exist in the local neighborhood 
of the arteries. This may happen when the vessel is in 
close vicinity of the myocardial cavities, or even when 
there are significant calcified plaques present in the 
arteries. To avoid these factors, we apply a pre-
processing step to first segment out the nearby heart 
cavities and remove any relevant calcified voxels in the 
searching step.  

With contrast enhancement, the heart cavities can be 
easily segmented out from its surrounding. In Fig. 1 we 
show an example, where the two cavity regions are 
segmented out by using a simple region-growing 
algorithm. In obtaining these results, a 10 10  seed 
region was selected, based on which the mean and 
standard deviation were computed and an interval was 
derived (within three times of the stand deviation from 
the mean) for region growing. Upon segmentation, 
these cavities regions were set to the same intensity 
level as the myocardium. 

When present, the calcified voxels can be easily 
identified by examining their intensity values (which 
are close to that of bone).  Thus, to reduce their impact, 
we can simply set these calcified voxels to a lower 
intensity (e.g., that of the seed point 0p ) when they are 
found to be inside the search window used for 
computing the center of gravity at a centerline point.  
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2.2.  Arterial lumen and wall segmentation 
2.2.1. Lumen segmentation. Upon examination of the 
image data, it is observed that the intensity value of 
lumen voxels would vary along the path of the vessel. 
This is especially true with the presence of either 
calcified or soft plaques. This indicates that the lumen 
voxels may not be modeled well by a constant region. 
To accommodate this variation, we adopt an adaptive 
region growing approach for segmentation of the 
lumen voxels.  

Specifically, for each segment between two 
consecutive centerline points ip  and 1ip , we first 
determine the local statistical distribution of the lumen 
voxels by calculating the mean mi and standard 
deviation i  of the intensity values from N centerline 
points that are immediately next to ip  and 1ip . Next, 
we compute a local threshold as 2i i iT m . We 
then perform region growing with this threshold from 
seed point ip  to identify the lumen voxels between the 
two cross-section planes at centerline points ip  and 

1ip , respectively. This process is repeated until the 
end of the centerline is reached. In our experiments, 
N=20 was used.  

2.2.2. Wall segmentation. Since the lumen is 
immediately surrounded by the arterial wall, we first 
apply a morphological dilation operation on the 
detected lumen with a ball structuring element of 
radius R voxels. This is used to isolate those possible 
candidates for wall voxels. Let S denote the set of 
augmented voxels resulted from this dilation operation, 
which does not include the lumen voxels. 

Next, we apply an adaptive region growing 
procedure to identify wall voxels from the set S. 
Specifically, for each segment between two 
consecutive centerline points ip  and 1ip , we 
calculate the mean im  and standard deviation i  of 
the intensity values from those voxels in S that also lie 
between the two cross-section planes at ip  and 1ip . 
We then define a threshold 3i i iT m . Afterward, 
we perform region growing from the lumen segment 
between ip  and 1ip  by including only those voxels in 
S that have intensity values between iT  and iT . This 
process is repeated until the end of the centerline is 
reached.  

We note that the region growing above is limited to 
only the set of voxels S augmented in the dilation step. 
This is to prevent the region growing step from leaking 
into the surrounding myocardium or even other nearby 

vessels. In our experiments, R=5 was found to be 
sufficient (which is close to the diameter of the lumen).  

2.23. Identification of soft plaques. To quantify 
possible narrowing of the vessel caused by plaques, we 
compute the effective cross-section area of the lumen. 
This is obtained by dividing the volume of the lumen 
segment between two centerline points ip  and 1ip  by 
the distance between them. Let ( )lA i  denote this 
resulting area. In a similar fashion, we can compute the 
effective cross-section area of the identified arterial 
wall ( )wA i . This area measure can signal the presence 
of positive vessel remodeling.  
 Thus, by contrasting these two area measures ( )lA i  
and ( )wA i , we obtain a measure that will signal the 
presence of either calcified or soft plaques. 
Specifically, we calculate the difference between the 
two measures ( ) ( ) ( )d w lA i A i A i . 

3. Results and discussions 
To demonstrate the proposed methods, we present 
results obtained with two sets of clinical acquisitions. 
The first dataset was from a subject which showed a 
small soft plaque in the left anterior descending (LAD) 
artery. The second dataset was from a subject with 
significant plaque load.  Both datasets were acquired 
on a Philips 64-slice CT scanner. Each volume 
consisted of 300 slices of 512 512  images. The slice 
thickness was 0.45 mm, and the pixel size was 0.43 
mm. 

In Fig. 2 we show the results obtained for the first 
dataset, where Fig. 2a shows the extracted lumen of the 
LAD artery, in which a soft plaque is identified; Fig. 
2b shows a cross-sectional view of the arterial wall of a 
segment in this artery; Fig. 2c show the intensity 
images for three cross sections on this segment, where 
section B corresponds to the soft plaque; Fig. 2d shows 
the cross-section areas of the lumen, wall, and their 
difference along the path of the artery. As can be seen, 
the extent of the soft plaque is clearly reflected in these 
cross-section curves. 

Similarly, in Fig. 3 we show the results obtained 
with the second dataset, in which the left circumflex 
(LCX) artery is shown. As can be seen, there are 
multiple plaques, calcified and soft, present in this 
artery. In particular, cross section B in Fig. 3c shows a 
calcified plaque (indicated by the high intensity 
region). In addition, the cross sections A-C also show 
that this artery segment is in close vicinity of a 
myocardial cavity (indicated by high intensity regions). 
In Fig. 3d we show a maximum intensity projection 
(MIP) view of this artery (including both lumen and 
wall), which shows multiple calcified and soft plaques.  
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The proposed procedure could nevertheless still 
segment the artery correctly despite these local 
interferences. These detection results were confirmed 
by an experienced radiologist.  

4. Conclusion 
In this paper we developed a computationally efficient 
procedure based on image segmentation and analysis 
for identification of soft plaques in coronary arteries 
from MDCT images. The procedure consisted of the 
following three steps: 1) extraction of the lumen 
centerline by using a multi-scale vessel tracking filter, 
2) segmentation of the lumen and wall separately by 
using locally adaptive region growing, and 3) 
quantification of soft plaques by examining the 
effective cross-section areas of the lumen and arterial 
wall.  The proposed methods were demonstrated to be 
effective for identification of both calcified and soft 
plaques on real clinical acquisitions. Encouraged by 
these initial promising results, we plan to further 
develop and validate the proposed procedure with more 
comprehensive clinical evaluations. 
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Fig. 1. Left: a 2D slice showing the heart region; Right: the 
same slice with two myocardial cavities segmented. 

 
(a)   (b) 

   
(c)   (d) 

Fig. 2.  Results from the first dataset: (a) extracted lumen of 
LAD artery, in which a soft plaque is present; (b) cross-
sectional view of the arterial wall of a segment of this artery; 
(c) corresponding intensity images of different cross sections 
indicated in (b), where section B corresponds to the soft 
plaque; (d) effective cross-section areas of the lumen (dotted-
red), wall (dashed-blue), and their difference (solid-green) 
along the artery path.  
 
 

   
(a)   (b) 

 
(c)  

   
(d)                    (e) 

Fig. 3. Results from the second dataset: (a) extracted lumen 
of LCX artery, in which multiple plaques are present; (b) 
cross-sectional view of the arterial wall of a segment of this 
artery; (c) intensity images corresponding to different cross 
sections indicated in (b), where section B shows calcified 
plaque (reflected by the high intensity region), and sections 
A, D, and E show soft plaques; (d) MIP view of the LCX 
vessel (lumen and wall), which shows multiple calcified and 
soft plaques; (e) the effective cross-section areas of the 
lumen (dotted-red), wall (dashed-blue), and their difference 
(solid-green) along the artery path. 
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